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Optical Multistage Interconnection Network

H-polarized light

V-polarized light
V-pol

H-pol

BCGH with superimposed 
Fresnel lens encoding

 

Ch. 1 

Ch. 2 

Ch. 3 

Ch. 4 

Ch. 5 

Ch. 6 

Ch. 7 

Ch. 8 

X Server Y

AO Cell #1

AO Cell #2

Detector #1

Detector #2

Ar
go

n 
La

se
r

Oscilliscope

2××××8 folded MIN demonstration shows complete interconnectivity in 
compact cavity design: 1××××8 output exhibits high contrast and uniformity
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rotator

Dilated Bypass Exchange 2×2 Switch 
requires only 2 BCGH and 1 PR element

Krishnamorthy, F. Xu, J. Ford, Y. Fainman, " Polarization-controlled multistage switch based on birefringent computer generated holograms," Appl. Opt., 36, 997-1010, 1997
D. M. Marom, P.E. Shames, F. Xu, and Y. Fainman, "Folded free-space polarization-controlled multistage  interconnection network", Appl. Opt., 37, 6884-6891, 1998

Polarization selective Fresnel lenses combine 1××××2 switching with 3D interconnectivity
BCGH has independent 
response to orthogonal 

polarizations



Generalized Femtosecond-rate Processing with 
Optical Nonlinearities



Nanophotonics:  
Far,  Near and Local Field Optical Systems

L>>λ

Far atomic-scale sub-systems
(e-m decoupled such as macro-
and micro-optics)

Inhomogeneous systems with variable scale Polarizability 
of atomic-scale homogeneous sub-systems:

>or< λ

Near atomic-scale sub-systems 
(e-m coupled such as artificial dielectrics, 
composites, and resonant PBGs)

L<<λ

L<λ

Local atomic-scale sub-systems (material 
internal interactions in absence of e-m field 
such as superlattice, quantum wires, dots, etc)

Intrinsic interactions



Inhomogeneous Optical Nanostructures:  
Materials and Devices
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Experimental example* :
Material : GaAs
Incident wavelength = 920 nm
Grating period = 200 nm
Grating depth = 490 nm
Phase difference ∆φ = 162.5ο

=> ∆n/n = 0.47

Near-field interactions
modify bulk material
properties

Form Birefringent Computer Generated Hologram : Anisotropic Spectral Reflectivity Polarization Optics :

Near-field Optical Materials : Near Field Programmable 
Diffractive Optical Element :

Index Modulation (∆n)
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Back Mirror

Front Mirror

Subwavelength E-O Modulator

Low voltage, compact size 
and programmability 

Multi-functionality and  arbitrary phase profile Large spectral and angular bandwidth, compact size, 
and normal incident operation  

3-material photonic crystal

Output with
Desired phase profileInput



Approaches to Optical Delay

Normal dispersion (dn/dω>0): “Slow” light (vg << c)
Anomalous dispersion (dn/dw<0):“Fast” light (vg > c)

Atomic Resonance, Free Space Delay,  Structural Resonance
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Nanostructures for  Fast Switching and Control

Civcom Confidential 24

Switching TimeSwitching Time

No Dark Time 

Resonantly enhanced 
EO control

Field localization for efficient 
nonlinear interactions and control

Index modulation (∆n)
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Objective: Characterization and testing nanophotonic devices and systems, and 
understanding near field interactions between light and quantum systems

Nanoscale Characterization of Near-field Complex
Amplitude with Femtosecond Resolution

[ ]ϕπ +∆++= ftIIIII roro 2cos2

R

SEM picture
Λ = 1.5 µm

Amplitude 
(with topography)

Phase 
(with topography)

Propagation of an ultrashort pulse in a waveguide

ττττ=0 fs ττττ=50 fs ττττ=150 fs ττττ=250 fs

ττττ=350 fs ττττ=450 fs ττττ=550 fs ττττ=600 fs

Advantages:
-Shot-noise limited 

(maximal SNR)

-Low power 
signal detection

-High phase resolution

Heterodyne Detection



Technologies enabling processing data in the 
optical domain.

• Optical address/header processing/recognition
• Optical buffer
• Switching fabric
• 3-R (retiming, reshaping, regeneration)
• Re-routing
• Wavelength conversion
• Contention detection/resolution


